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Abstract 

'Effective resolution' is a practical quantitative 
measure of the extent, quality, and completeness of 
X-ray diffraction data. Sparrow's [Astrophys. J. 
(1916), 44, 76-86] criterion for the separation of just- 
resolved peaks is applied to a typical electron density 
peak shape, which, in turn, is the Fourier transform 
of an average form factor derived from the observed 
Fhkt'S. Numerical studies of a Gaussian form factor, 
with appropriate modifications for atomic scattering 
factors, give a quantitative picture of the dependence 
of resolution on both the amount of data and the 
underlying structural features. The relation between 
effective resolution and nominal resolution (drain) 
depends only on the ratio of the limiting high-resol- 
ution peak width to dmin. 

Introduction 

Even good protein data suffer from increasing num- 
bers of weak reflections for d spacings below 2.0 A. 
A rapid increase in the percentage of weak and 
unmeasured reflections from 2.0 to 1.65 A in an elas- 
tase-inhibitor complex studied in this laboratory 
(Meyer, Radhakrishnan, Cole & Presta, 1986) moti- 
vated this inquiry into how one can accurately 
describe the resolution of such data. 

The nominal resolution (dmin) indicates the extent 
of data in reciprocal space, but not its quality or 
completeness. I propose in this paper an empirical 
measure of resolution which deals quantitatively with 
various causes of peak broadening, including ran- 
domly distributed unmeasured reflections. 

The conventional treatment of resolution is 
inadequately based on a point-atom model. I present 
an approximate but quantitative treatment of the vari- 
ation of resolution as a function of dmi n when atoms 
are not points and B # 0. A single 'universal' resolu- 
tion curve emerges which depends on a normalized 
distance. There is an internal scale determined by the 
quality of the data which indicates whether or not 
atomic resolution can be obtained.* 

* A program listing and commentary has been deposited with 
the British Library Document Supply Centre as Supplementary 
Publication No. SUP 44704 (11 pp.). Copies may be obtained 
through The Executive Secretary, International Union of Crystal- 
lography, 5 Abbey Square, Chester CH1 2HU, England. 

Resolution and peak separation in real space 

Resolution deals with how much detail can be seen 
in an image. In protein crystallography, the image is 
the electron density map which consists of a sum of 
blurred image peaks corresponding to the atoms in 
the structure. The peaks will be broadened beyond 
the intrinsic size of the electron distribution by ther- 
mal motion, disorder and Fraunhofer diffraction 
effects. In optics it is the Fraunhofer diffraction from 
a single extended aperture which blurs an image and 
determines resolving power (Strong, 1958; Born & 
Wolf, 1965). 

The smallest separation at which image peaks are 
still individually identifiable is a theoretical limit to 
resolution which I will call the critical separation. The 
analysis can be reduced to a consideration of the sum 
of two peaks. It is easy to see what happens in the 
two limiting cases of separation: when the centers of 
two peaks are coincident, they sum to a single peak 
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Fig. 1. The sum of two typical density peaks of an elastase- 

inhibitor complex (a), at various separations. The curves are 
labeled on the right by the distance between the peak centers, 
and on the left by the ratio of this distance to the critical 
separation where a saddle just begins to form (dmi . = 1.65 ~). 
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of double height, whereas at large separations one 
sees essentially two peaks, with slight distortions due 
to ripples in the tails• The intermediate cases are 
harder to characterize and depend in detail on peak 
shape and breadth. The sum of two typical density 
peaks of an elastase-inhibitor complex is shown in 
Fig. 1 for several peak separations. 

Consider a curve which is symmetrical about a 
single maximum. The sum of two identical copies of 
such a curve with their peaks offset will have a local 
minimum at the midpoint between the individual 
peak positions when the separation of their central 
maxima exceeds twice the distance from the maxi- 
mum to the first inflection point for an individual 
curve. Two peaks are visible in the sum at separations 
greater than this critical distance. Note that one 
matches the inflection points of the two curves rather 
than superimposing the maximum of one with the 
first minimum of the other as is customary with the 
Rayleigh definition of resolution (Strutt, 1879). 

The use of the first inflection point of an image 
peak to define the resolution limit is due to Sparrow 
(1916). He made some observations on simulated 
images of optical spectral lines which showed that 
this limit is actually achievable: two lines at this 
minimum separation appear as a doublet to the eye. 
In the past, the 'limit of resolution' has been given 
in terms of the Rayleigh limit (James, 1948; Stenkamp 
& Jensen, 1984). The Rayleigh limit for a point atom 
in three dimensions (=0.917drain) is somewhat larger 
than the minimum separation at which the two peaks 
can be distinguished (=0"796dmin) given by the 
Sparrow limit. 

Method 

Neither of these ideal limits accurately describes real 
data. I propose an effective resolution, 

Deft = 2" 5 x 
the distance from the central maximum'~ 
to the first radial inflection point ~ ,  
of a typical image peak / 

(1) 

which is to be evaluated for each structure. To be 
consistent with the present usage of dmi n as  a measure 
of resolution, the scale factor is chosen so that De, 
e q u a l s  dmi n in the low-resolution limit• (More pre- 
cisely, the scale factor is 2 .511 . . .  and is derived from 
the first inflection point of the image peak for a point 
atom.) There are two types of distances here: an 
interplanar spacing symbolized by d and a distance 
between peak centers given by D. In practice De~ is 
somewhat larger than the nominal resolution owing 
to the inclusion of peak-broadening effects, although 
the omission of very-low-angle data can make it smal- 
ler than dmi n at low resolution. Since D~f~ is 1.25 times 
the Sparrow limit, peaks at this separation will have 
a saddle between them; this will be discussed in 
greater detail below. 

For the determination of the effective resolution of 
data, a typical image peak is taken to be the Fourier 
transform of an average form factor calculated from 
the measured data. A form factor is a single function 
which combines the effects of atomic scattering 
factors and temperature factors. Examples of form 
factors and their transforms for two experimental 
structures and two theoretical models are given in 
Figs. 2 and 3. 

To obtain Fare(s), average the observed Fhk,'S in a 
narrow spherical shell from s to s + As,  where 

s = 1 / d  =2(sin  0)/h.  (2) 

Sum the magnitudes of the observed F 's  and divide 
by the number of all reciprocal-lattice points in the 
shell, counting unmeasured and space-group-extinct 
reflections as well as the measured reflections. If data 
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Fig. 2. Average form (scattering) factors for two empirical, (m), 
(a), and two theoretical cases, (p), (b). The relative normaliz- 
ations are consistent with unit peak height in Fig. 3: (p) point 
atom, B = 0, calculated; (b) point atom, B = 25 Ae, calculated; 
(a) elastase with inhibitor, observed; (m) native elastase, 
observed. 
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Fig. 3. A selection of image peaks a t  d m i  n = 1.65 A, corresponding 
to the form factors given in Fig. 2. Peak height is normalized to 
1 so that differences in width are readily apparent. Curves (b), 
(a) and (m) are almost identical from the central maximum to 
well past the first inflection point. 
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are restricted to less than a sphere by the symmetry 
group, suitable weights should be used to compensate 
for multiple counting on boundaries. 

The procedure is reminiscent of a Wilson plot, but 
yields an estimate of the form factor directly instead 
of parametrizing it in terms of an average atomic 
scattering factor and an overall temperature factor. 
It includes the effects of temperature and disorder 
fall-off, and reduces the scattering power in shells 
where there are many unmeasured reflections. In 
addition, Fa~e(S) is zero where there are no data. If 
the density map is determined from part of the data, 
or if the high-angle F's  have been modified to smooth 
or sharpen the map, it is this restricted or modified 
set of F's which should be used to calculate Fare(S). 

This average form factor transforms to a spherically 
symmetric density p(r). The numerical calculation of 
t9 can be simplified by using a pseudocell in which 
a = b = c  and a = / 3 = 3 / = 9 0  ° . By choosing r along 
the x axis, the triple sum can be written as 

where 

p(x)oc ~ Fh cos 27rhx, (3) 
h=0 

m 

Fh = Z WhktFa~e(Shkt). (4) 
k = 0  I = 0  

The weights Whkl compensate for double counting on 
the faces, edges and apex of the octant (one, two or 
three indices equal zero: w = 4, 2, 1 respectively) as 
compared with the interior (w = 8). The restriction 

S2kl = ( h 2 q_ k 2 q_ 12)/a 2 < m 2 / a  2 ... Smax2 ( 5 )  

is implicit in Fave(S). The resulting sum is easily 
evaluated (for some of the examples in this paper, 
a = 60 ~;  in others, a = 40drain). To find the effective 
resolution, the first zero of the second derivative of 
p is needed; this can be found from the Fh'S as 

p"(X)  OC- ~ h2Fh c o s  27rhx. (6) 
h=0 

Examples 
Effective resolution has been determined for a native 
porcine pancreatic elastase structure (Meyer, Cole, 
Radhakrishnan & Epp, 1988) denoted by (m), and 
for three elastase-inhibitor complexes: that of Meyer 
et al. (1986), denoted by (a), and two of Radhakrish- 
nan, Presta, Meyer & Wildonger (1987), denoted by 
(c) and (z). Data sets were taken on film in three 
cases (m, a, c) and with an area detector in the other 
(z). All data sets have poor percent-observed figures 
in the last few shells, owing partly to systematic 
exclusions of data in certain directions due to collec- 
tion geometry, so that the nominal resolution is not 
really a fair measure of the extent of the data. 

Table 1. Effective resolution of four elastase structures 

Increasing amounts  o f  the observed data (d > de, t) were used to 
calculate Den for  a native elastase structure (m),  and three inhibited 
structures (a ) ,  (c),  (z). The corresponding  dm,n's are 1.65, 1.65, 
1.76 and 2.09/~.  

Deft 
dcut (rn) (a)  (c) (z) 

2.5 2.62 2.61 2-61 2.63 
2.4 2.53 2.53 2-52 2.53 
2.3 2.43 2-43 2.42 2.44 
2.2 2.33 2.33 2.33 2.34 
2.1 2-23 2.24 2.24 2.25 
2.0 2-14 2.15 2.15 
1-9 2.05 2.06 2.06 
1.8 1.97 1.99 1.98 
1.7 1.91 1.94 1.94 
1.6 1-87 1.93 

Table 2. A consistency check 

The average form factor  was de termined from calculated FhkfS 
using protein coordinates  with B = 15 A2 and all atoms assumed 
to be carbon.  

s f ( s )  F c ave(S) 
0"1 5"54 5"43 
0"2 4"38 5"06 
0"3 3"08 3"08 
0"4 1"95 1"62 
0"5 1"16 1"04 
0"6 0"65 0"53 

In Table 1, effective resolution is tabulated for 
successively larger fractions of the data from these 
four elastase structures. The numbers agree until a 
few tenths of an ~.ngstr6m from the limit of data 
collection for any given structure. This suggests that 
the limitation on resolution here is the amount of 
data collected, rather than variations in crystal 
quality. The theoretical analysis in the next section 
indicates that resolution is still (Fraunhofer) diffrac- 
tion limited at dmi n > 1.8 ~.  

Does Fave actually capture the characteristics of 
the underlying atomic form factors? As a consistency 
check on the method, a numerical test was performed. 
If one starts with a known atomic scattering factor 
and a known temperature factor, does the evaluation 
of Fave from calculated structure factors recover the 
initial form factor, 

f (s)  =Atomic(S) exp (-Bs2/4)? (7) 

The test was made with a set of refined coordinates 
for the non-hydrogen atoms of elastase, with all atoms 
being given a B of 15 A2 and scattering factors for 
carbon. The results, in Table 2, are encouraging. In 
the range 0 . 1 < s < 0 . 6 A  -~, the agreement is 13% 
r.m.s, after scaling by a constant factor. The fall-off 
of Fare with increasing s is the same or perhaps a 
little more rapid than f(s).  A modest rise of Fare 
is seen near 5 ~ ,  which is characteristic of protein 
structures. 
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U n i v e r s a l  r e s o l u t i o n  c u r v e s  

As the nominal resolution varies, the apparent size 
of atoms changes. The interplay between the effects of 
the amount of data available and the intrinsic size of 
the atoms is described by a simple curve. At very low 
resolution the size is proportional to dm~,, while in 
the high-resolution limit it approaches a constant. A 
model based on a Gaussian form factor, 

f ( s )  = exp ( -~s2 /4 ) ,  (8) 

illustrates the changing importance of the two effects. 
B is written instead of B to emphasize that more 
than just thermal motion is included in the model. In 
the limit dmi, = 0, the Fourier transform of this form 
factor is also a Gaussian, with standard deviation 
(~/2)1/2/2Ir (variance ~/8~-2). The critical separ- 
ation for two Gaussian peaks is twice the standard 
deviation, which I will take as the measure of the 
intrinsic width of the peak, 

W= (~12)'/21~r. (9) 

It is perhaps more appropriate to think of resolu- 
tion in terms of Smax than dmi, because high resolution 
corresponds to large values of the inverse distance. 
Just as one thinks of distances from the mean of a 
Gaussian distribution in terms of multiples of the 
standard deviation, the distances in this model can 
be normalized to the limiting critical distance W, 

t = W / d m i n  = Wsma x. ( 1 0 )  

Peak center separations, D, corresponding to 
different amounts of saddle were determined numeri- 
cally for a range of e, ~ and Smax in this Gaussian 
model. The parameter 

e = (peak - saddle)/(peak) ( 11 ) 

L 1 I I I I I I 

1.o / o.o 

o.~ 

032_ 2 
8: d _ 

0.4  - 

I 

0.4 0.8 1.2 
t 

Fig. 4. The normalized reciprocal separation U(e, t) as a function 
of the normalized reciprocal nominal resolution t= 
(B/2)l/2Sm~,/rc. Curves are given for saddle dips e = 0, 0-2, 0.4, 
and the horizontal asymptotes indicated for intermediate values. 
The intersection of the initial slope and final asymptote is shown 
for e=0. 

denotes the dip at the midpont saddle relative to the 
peak maxima in the density sum curve. Instead of 
requiring separate curves D(e, 8, Smax) for each e and 
8, the results are concisely expressible in terms of a 
normalized reciprocal separation, U: 

D(e,t)= W/U(e , t )= l /S (e , t ) .  (12) 

The asymptotic value U(0, oo) is 1, corresponding to 
D(0, oo) = 0.225B in. Since Ue~(t) = 0.7965 U(0, t), 

Def~(oo) = 0.282B ~/2. (13) 

Qualitatively, Fig. 4 shows two limits: low resolu- 
tion where the effective resolution is nearly propor- 
tional to the nominal resolution, and extremely high 
resolution where the effective'resolution is almost 
constant. The transition region between the limiting 
cases occurs when t is near unity and corresponds 
approximately to the domain of high-resolution 
protein crystallography (2>  dra in>  1/~, for overall 
B s about 15/~2). 

So long as a curve remains near the initial slope, 
resolution is (Fraunhofer) diffraction limited, deter- 
mined more by the amount of data than by the under- 
lying characteristics of the atoms. Conversely, when 
a curve nears its final constant value, the structure, 
motion and disorder of the scatterers dominates; tak- 
ing additional data (assuming one can measure it) 
will not much reduce the apparent size of the atoms. 
Nowhere does the effective resolution depart more 
than 20% from one or other of the limiting lines. 

Not only can one scale out the effect of different 
8, but each of the curves for different e in Fig. 4 
has almost the same shape aside from vertical and 
horizontal scaling. The shape is approximated by 

r(1 + "r2+ ~.8)-,/8 (14) 

to better than 3%. The horizontal scale is the cross- 
over point, tx(e), the abscissa of the point where the 
extrapolation of the initial slope equals the final con- 
stant value U(e, oo), so that 

r=t/tx(e).  (15) 

If the function 

g(r,e)=U[e, rtx(e)]/U(e, oo) (16) 

is plotted for the values of e given in Table 3, the 
curves lie on top of each other initially and asymptoti- 
cally. The worst agreement is at the crossover point 
where the values range from 0.807 to 0.857, with a 
mean of 0.842 and a r.m.s, discrepancy of 0.014. 
Values for scaling are given in Table 3, as well as the 
value of U[e, tx(e)] at the crossover point. 

The case e -- 0 gives the critical separation or Spar- 
row limit of resolution, O(0, t). Because of the utility 
of this curve after various scaling transformations, an 
accurate numerical fit has been determined. The 
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Table 3. Parameters for universal curves 

Initial Final Crossover Crossover 
Dip slope value value position 

e U,(e, O) U(e, oo) U[e, tx(e)] tx(e ) 
0.00 1.255 1.000 0.857 0.796 
0.05 1-212 0.930 0-750 0.767 
0.10 1.138 0.848 0.709 0.746 
0.15 1.099 0.797 0.673 0.725 
0.20 1-072 0.758 0.642 0.707 
0.25 1.049 0.726 0.614 0.692 
0.30 1.026 0.697 0.590 0.679 
0.35 1.005 0.671 0.567 0.668 
0.40 0.983 0-647 0.546 0.659 

reciprocal critical separa t ion curve is 

U(O, t )= t/(O.7966+O.1380t2+O.1134t4), (17) 

which has absolute  error less than 0.0003 for t < 0.97. 
Expression (14) is a better approximat ion  than 
equation (17) for t > 1.1, with an error less than 0.7 %. 

To test the effect of  a tomic scattering factors,  which 
are not Gauss ian ,  calculat ions were made with a mean 
atomic scattering factor,  fm . . . .  for an 'average '  protein 

C io00N2700370H1680814. 

Curves are shown in Fig. 5 for overall B = 5, 15 and 
25 A2 in the range 0-< Sma x ~ 1 A - ' .  

The calculation of  effective resolution depends  pre- 
dominant ly  on the shape of  Fave near  Sma x. A study 
of Figs. 2 and 3 shows that large differences in the 
form-factor  curves (b, m, a)  for s < 0 - 1  A - I  result in 
only a slight modificat ion of  the depth of  the first 
min imum of  the image peak and in almost  no change 

in the shape of  the peaks  closer to the central 
maximum.  Since the dominan t  contribution to resolu- 
tion comes from the form factor  near  Smax, the results 
shown in Fig. 5 can be approx imated  from U(0,  t) 
by setting 

B B + ( 4 /  2 -- Smax) log[fmean(O)/fmean(Smax) ]. (18) 

S(O, B, Smax) is reproduced  with relative error less 
than 2%. 

This simple Gauss ian  model  explains the qualita- 
tive features of  resolution and is effective quanti ta-  
tively. Al though measurement  thresholds may cut off 
Fave more quickly for real da ta  than in the model ,  the 
similarity of  the typical density peaks in Fig. 3 argues 
for its applicabili ty,  as does the success of  the numeri-  
cal approximat ion  for ~. However,  the best guide to 
the resolution of  a specific structure is still the typical 
p(r) obtained as the t ransform of Fave(S). 

C o m p a r i s o n  o f  d e f i n i t i o n s  o f  r e s o l u t i o n  

Effective resolution is compared  with several different 
formulat ions  of  the Rayleigh resolution criterion in 
Fig. 6. The Rayleigh criterion appears  in its original 
definition as the distance DR(t) between the central 
max imum and the first min imum of an image peak,  
as a l inear extrapolat ion of  the point-atom separat ion 

De = 0.917dm~,, (19) 

and as a dip criterion (e =0 .19)  applied to arbi t rary 
peaks. When ~ ~ 0 these definitions are no longer 
equivalent  and all but the last have serious problems 
as t approaches  0.8. 
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Fig. 5. Reciprocal critical separation S(0, B, Smax) as a function of 
reciprocal nominal resolution Smax, calculated for a mean atomic 
scattering factor characteristic ofproteins with additional overall 
B=5, 15 and 25 A2. The dotted straight line from the origin 
gives the Rayleigh resolution for the point-atom case (p). 
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Fig. 6. Comparison of normalized reciprocal effective resolution 
Ue~(t) with U(0.2, t) and with several versions of Rayleigh 
resolution. UL iS the extrapolation of the point atom, B =0, 
Rayleigh criterion: note that beyond the crossing at U(0, 0.79) 
only a single peak appears. Ug(t) is the Rayleigh first-minimum 
criterion applied to ~-broadened peaks. The discontinuity at 
t = 0.837 occurs when the 'first' minimum disappears; that at 
t = 1.152 when the 'second' minimum also disappears. 
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The curve for Uen(t) lies close to that for U(0.2, t), 
as seen in Fig. 6. This is also where one would expect 
the reciprocal separation, UR(t), based on the 
observation that point atoms at the Rayleigh sepa- 
ration have e = 0.19. In fact, the first minimum in the 
peak decreases in depth as B increases and moves 
outwards faster than the first inflection point. At 
t = 0-837, this 'first' minimum disappears and its role 
is taken by what was the second minimum, giving a 
discontinuity in UR(t). Even before this, at t = 0.63, 
the separation and hence e determined by the Ray- 
leigh criterion has exceeded that for U(0.2, t). 

Because U(e, t) becomes constant for large t, 
resolution limits which are proportional to drain will 
ultimately be wrong. Such limits describe data-limited 
rather than structure-limited resolution. The simple 
extrapolation of the point-atom Rayleigh limit sug- 
gested by Stenkamp & Jensen (1984), expressed in 
terms of U, 

UL=t/0 .917,  (20) 

crosses U(0, t) at t = 0.79, thus no longer producing 
a saddle between peaks. Their example (nitrogen, 
B = 10/~2,  Smax = 0"5 A - l )  is still data limited, corre- 
sponding to t=0 .50 .  When compared with the 
S(0, B, Smax) curves in Fig. 5, 

SL = Smax/0"917 (21) 

does lie below the B = 5  A, 2 curve all the way to 
Smax = 1, but crosses the B = 15 A. 2 curve at Smax = 0"68. 

tifiable atoms in the absence of noise. With some idea 
of the noise spectrum, the information about the 
separation required for a certain size of saddle could 
provide a probability that apparent features are real 
rather than just random fluctuations in ridges. Some 
guidance about the choice of a contouring threshold 
for electron density may be forthcoming. 

There is interest in effective resolution as a measure 
of quality for protein crystals grown in space (Bugg, 
1987). The method gives a single quantitative measure 
of the extent of data in reciprocal space, answering 
the question: "How far out does the crystal diffract?' 
It depends on the average diffraction amplitude in a 
resolution shell, whereas a percent-observed figure 
depends on an experimental threshold of observabil- 
ity. It is not yet known how sensitive effective resolu- 
tion would be as a measure of crystal quality. Quick 
reliable estimates of Fave(S) would be needed for 
survey work. In evaluating different crystallization 
conditions for the same protein, one might be able 
to use the relative decrease of FRye at a fixed Smax 
rather than measuring out to essentially zero diffract- 
ing power. 

This work has benefited from continuing dis- 
cussions with Rosemarie Swanson and from critical 
readings by R. E. Rosenfield, E. F. Meyer, A. Karrer, 
and two referees. Financial support has come from 
the National Science Foundation and the Office of 
Naval Research. 

Further applications 

Effective resolution was designed to measure the 
quality and completeness of data on a case-by-case 
basis. Once the machinery to calculate typical density 
peaks is in place, other questions can be answered. 
For example, an easy calculation will tell whether 
holes can be seen in six- or five-membered rings for 
specific data. When should data collection stop? Are 
the data in the outer shells good enough to justify 
the effort in collecting more or refining them? Will 
more data of the current quality add any significant 
resolution to the study? 

When the critical separation is known for given 
data, one knows the minimum distance between iden- 
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